The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo.

نویسندگان

  • Khaled Khazim
  • Yves Gorin
  • Rita Cassia Cavaglieri
  • Hanna E Abboud
  • Paolo Fanti
چکیده

Podocyte injury, a major contributor to the pathogenesis of diabetic nephropathy, is caused at least in part by the excessive generation of reactive oxygen species (ROS). Overproduction of superoxide by the NADPH oxidase isoform Nox4 plays an important role in podocyte injury. The plant extract silymarin is attributed antioxidant and antiproteinuric effects in humans and in animal models of diabetic nephropathy. We investigated the effect of silybin, the active constituent of silymarin, in cultures of mouse podocytes and in the OVE26 mouse, a model of type 1 diabetes mellitus and diabetic nephropathy. Exposure of podocytes to high glucose (HG) increased 60% the intracellular superoxide production, 90% the NADPH oxidase activity, 100% the Nox4 expression, and 150% the number of apoptotic cells, effects that were completely blocked by 10 μM silybin. These in vitro observations were confirmed by similar in vivo findings. The kidney cortex of vehicle-treated control OVE26 mice displayed greater Nox4 expression and twice as much superoxide production than cortex of silybin-treated mice. The glomeruli of control OVE26 mice displayed 35% podocyte drop out that was not present in the silybin-treated mice. Finally, the OVE26 mice experienced 54% more pronounced albuminuria than the silybin-treated animals. In conclusion, this study demonstrates a protective effect of silybin against HG-induced podocyte injury and extends this finding to an animal model of diabetic nephropathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications

Background The present study describes the susceptibility of prepubertal testis of mice to prooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions. MaterialsAndMethods Following in vitro exposure to iron (5,10 and 25 M), oxidative response measured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4 wk) was more robust c...

متن کامل

Astragaloside IV, a Novel Antioxidant, Prevents Glucose-Induced Podocyte Apoptosis In Vitro and In Vivo

Glucose-induced reactive oxygen species (ROS) production initiates podocyte apoptosis, which represents a novel early mechanism leading to diabetic nephropathy (DN). Here, we tested the hypothesis that Astragaloside IV(AS-IV) exerts antioxidant and antiapoptotic effects on podocytes under diabetic conditions. Apoptosis, albuminuria, ROS generation, caspase-3 activity and cleavage, as well as Ba...

متن کامل

Notoginsenoside R1 ameliorates podocyte adhesion under diabetic condition through α3β1 integrin upregulation in vitro and in vivo.

BACKGROUND Decreased expression of α3β1 integrin may contribute to reduction in podocyte adhesion to glomerular basement membrane (GBM), which represents a novel early mechanism leading to diabetic kidney disease (DKD). Here, we examined the protective effects of Notoginsenoside R1 (NR1) on podocyte adhesion and α3β1 integrin expression under diabetic condition in vitro and in vivo. METHODS C...

متن کامل

Squid ink polysaccharide prevents autophagy and oxidative stress affected by cyclophosphamide in Leydig cells of mice: a pilot study

Objective(s): The aim of this study was to explore the effects of Squid ink polysaccharide (SIP) on prevention of autophagy and oxidative stress induced by cyclophosphamide (CP) in Leydig cells of mice. Materials and Methods: Examination of reproductive organ exponents, abnormal sperm rate, activities of superoxide dismutase (SOD), catalase (CAT), contents of malondialdehyde (MDA), and histolog...

متن کامل

Effect of Tongxinluo on Podocyte Apoptosis via Inhibition of Oxidative Stress and P38 Pathway in Diabetic Rats

Diabetic nephropathy (DN) has been the leading cause of end-stage renal disease (ESRD). Podocyte apoptosis is a main mechanism of progression of DN. It has been demonstrated that activated P38 and caspase-3 induced by oxidative stress mainly account for increased podocyte apoptosis and proteinuria in DN. Meanwhile, Tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 305 5  شماره 

صفحات  -

تاریخ انتشار 2013